std::ranges::rotate
| Definiert in Header <algorithm> |
||
| Aufruf-Signatur |
||
| template< std::permutable I, std::sentinel_for<I> S > constexpr ranges::subrange<I> |
(1) | (seit C++20) |
| template< ranges::forward_range R > requires std::permutable<ranges::iterator_t<R>> |
(2) | (seit C++20) |
ranges::rotate die Elemente im Bereich [first, last) so, dass das Element *middle das erste Element des neuen Bereichs und *(middle - 1) das letzte Element wird.[first, last) kein gültiger Bereich ist oder middle nicht in [first, last) liegt.Die auf dieser Seite beschriebenen funktionsähnlichen Entitäten sind Algorithmus-Funktionsobjekte (informell als niebloids bekannt), d.h.
- Können explizite Template-Argumentlisten bei keinem von ihnen angegeben werden.
- Keiner von ihnen ist für Argument-abhängige Suche sichtbar.
- Wenn einer von ihnen durch normale unqualifizierte Suche als Name links vom Funktionsaufrufoperator gefunden wird, wird die Argument-abhängige Suche unterdrückt.
Inhalt |
[edit] Parameter
| first, last | - | das Iterator-Sentinel-Paar, das den Bereich der zu rotierenden Elemente definiert |
| r | - | der Bereich der zu rotierenden Elemente |
| middle | - | der Iterator auf das Element, das am Anfang des rotierten Bereichs erscheinen soll |
[edit] Rückgabewert
{new_first, last}, wobei new_first gleich ranges::next(first, ranges::distance(middle, last)) ist und eine neue Position des von first zeigenden Elements bezeichnet.
[edit] Komplexität
Im schlimmsten Fall linear: ranges::distance(first, last) Vertauschungen.
[edit] Hinweise
ranges::rotate ist bei gängigen Implementierungen effizienter, wenn I bidirectional_iterator oder (noch besser) random_access_iterator modelliert.
Implementierungen (z. B. MSVC STL) können Vektorisierung aktivieren, wenn der Iteratortyp contiguous_iterator modelliert und das Tauschen seines Werttyps weder eine nicht-triviale spezielle Memberfunktion noch eine ADL-gefundene swap aufruft.
[edit] Mögliche Implementierung
Siehe auch die Implementierungen in libstdc++ und MSVC STL.
struct rotate_fn { template<std::permutable I, std::sentinel_for<I> S> constexpr ranges::subrange<I> operator()(I first, I middle, S last) const { if (first == middle) { auto last_it = ranges::next(first, last); return {last_it, last_it}; } if (middle == last) return {std::move(first), std::move(middle)}; if constexpr (std::bidirectional_iterator<I>) { ranges::reverse(first, middle); auto last_it = ranges::next(first, last); ranges::reverse(middle, last_it); if constexpr (std::random_access_iterator<I>) { ranges::reverse(first, last_it); return {first + (last_it - middle), std::move(last_it)}; } else { auto mid_last = last_it; do { ranges::iter_swap(first, --mid_last); ++first; } while (first != middle && mid_last != middle); ranges::reverse(first, mid_last); if (first == middle) return {std::move(mid_last), std::move(last_it)}; else return {std::move(first), std::move(last_it)}; } } else { // I is merely a forward_iterator auto next_it = middle; do { // rotate the first cycle ranges::iter_swap(first, next_it); ++first; ++next_it; if (first == middle) middle = next_it; } while (next_it != last); auto new_first = first; while (middle != last) { // rotate subsequent cycles next_it = middle; do { ranges::iter_swap(first, next_it); ++first; ++next_it; if (first == middle) middle = next_it; } while (next_it != last); } return {std::move(new_first), std::move(middle)}; } } template<ranges::forward_range R> requires std::permutable<ranges::iterator_t<R>> constexpr ranges::borrowed_subrange_t<R> operator()(R&& r, ranges::iterator_t<R> middle) const { return (*this)(ranges::begin(r), std::move(middle), ranges::end(r)); } }; inline constexpr rotate_fn rotate {}; |
[edit] Beispiel
ranges::rotate ist ein gängiger Baustein in vielen Algorithmen. Dieses Beispiel demonstriert Insertion Sort.
#include <algorithm> #include <iostream> #include <numeric> #include <string> #include <vector> int main() { std::string s(16, ' '); for (int k {}; k != 5; ++k) { std::iota(s.begin(), s.end(), 'A'); std::ranges::rotate(s, s.begin() + k); std::cout << "Rotate left (" << k << "): " << s << '\n'; } std::cout << '\n'; for (int k {}; k != 5; ++k) { std::iota(s.begin(), s.end(), 'A'); std::ranges::rotate(s, s.end() - k); std::cout << "Rotate right (" << k << "): " << s << '\n'; } std::cout << "\nInsertion sort using `rotate`, step-by-step:\n"; s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'}; for (auto i = s.begin(); i != s.end(); ++i) { std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": "; std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1); std::cout << s << '\n'; } std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n'; }
Ausgabe
Rotate left (0): ABCDEFGHIJKLMNOP Rotate left (1): BCDEFGHIJKLMNOPA Rotate left (2): CDEFGHIJKLMNOPAB Rotate left (3): DEFGHIJKLMNOPABC Rotate left (4): EFGHIJKLMNOPABCD Rotate right (0): ABCDEFGHIJKLMNOP Rotate right (1): PABCDEFGHIJKLMNO Rotate right (2): OPABCDEFGHIJKLMN Rotate right (3): NOPABCDEFGHIJKLM Rotate right (4): MNOPABCDEFGHIJKL Insertion sort using `rotate`, step-by-step: i = 0: 2420597371 i = 1: 2420597371 i = 2: 2240597371 i = 3: 0224597371 i = 4: 0224597371 i = 5: 0224597371 i = 6: 0224579371 i = 7: 0223457971 i = 8: 0223457791 i = 9: 0122345779 Sorted!
[edit] Siehe auch
| (C++20) |
Kopiert und rotiert einen Bereich von Elementen (Algorithmus-Funktionsobjekt) |
| (C++20) |
Kehrt die Reihenfolge der Elemente in einem Bereich um (Algorithmus-Funktionsobjekt) |
| Rotiert die Reihenfolge der Elemente in einem Bereich (Funktionstemplate) |