std::ranges::all_of, std::ranges::any_of, std::ranges::none_of
| Definiert in Header <algorithm> |
||
| Aufruf-Signatur |
||
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(1) | (seit C++20) |
| template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< |
(2) | (seit C++20) |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(3) | (seit C++20) |
| template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< |
(4) | (seit C++20) |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(5) | (seit C++20) |
| template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< |
(6) | (seit C++20) |
[first, last) false zurückgibt (nach Projektion mit der Projektion proj).[first, last) true zurückgibt (nach Projektion mit der Projektion proj).[first, last) true zurückgibt (nach Projektion mit der Projektion proj).Die auf dieser Seite beschriebenen funktionsähnlichen Entitäten sind Algorithmus-Funktionsobjekte (informell als niebloids bekannt), d.h.
- Können explizite Template-Argumentlisten bei keinem von ihnen angegeben werden.
- Keiner von ihnen ist für Argument-abhängige Suche sichtbar.
- Wenn einer von ihnen durch normale unqualifizierte Suche als Name links vom Funktionsaufrufoperator gefunden wird, wird die Argument-abhängige Suche unterdrückt.
Inhalt |
[edit] Parameter
| first, last | - | das Iterator-Sentinel-Paar, das den Bereich der zu untersuchenden Elemente definiert |
| r | - | der zu untersuchende Elementbereich |
| pred | - | Prädikat, das auf die projizierten Elemente angewendet wird |
| proj | - | Projektion, die auf die Elemente angewendet wird |
[edit] Rückgabewert
| Hat true Element | Ja | Nein | ||
|---|---|---|---|---|
| Hat false Element | Ja | Nein | Ja | Nein[1] |
all_of
|
false | true | false | true |
any_of
|
true | true | false | false |
none_of
|
false | false | true | true |
- ↑ Der Bereich ist in diesem Fall leer.
[edit] Komplexität
Höchstens last - first Anwendungen des Prädikats und der Projektion.
[edit] Mögliche Implementierung
| all_of (1,2) |
|---|
struct all_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if_not(first, last, std::ref(pred), std::ref(proj)) == last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr all_of_fn all_of; |
| any_of (3,4) |
struct any_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) != last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr any_of_fn any_of; |
| none_of (5,6) |
struct none_of_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr bool operator()(I first, S last, Pred pred, Proj proj = {}) const { return ranges::find_if(first, last, std::ref(pred), std::ref(proj)) == last; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>,Proj>> Pred> constexpr bool operator()(R&& r, Pred pred, Proj proj = {}) const { return operator()(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr none_of_fn none_of; |
[edit] Beispiel
#include <algorithm> #include <functional> #include <iostream> #include <iterator> #include <numeric> #include <vector> namespace ranges = std::ranges; constexpr bool some_of(auto&& r, auto&& pred) // some but not all { return not (ranges::all_of(r, pred) or ranges::none_of(r, pred)); } constexpr auto w = {1, 2, 3}; static_assert(!some_of(w, [](int x) { return x < 1; })); static_assert( some_of(w, [](int x) { return x < 2; })); static_assert(!some_of(w, [](int x) { return x < 4; })); int main() { std::vector<int> v(10, 2); std::partial_sum(v.cbegin(), v.cend(), v.begin()); std::cout << "Among the numbers: "; ranges::copy(v, std::ostream_iterator<int>(std::cout, " ")); std::cout << '\n'; if (ranges::all_of(v.cbegin(), v.cend(), [](int i) { return i % 2 == 0; })) std::cout << "All numbers are even\n"; if (ranges::none_of(v, std::bind(std::modulus<int>(), std::placeholders::_1, 2))) std::cout << "None of them are odd\n"; auto DivisibleBy = [](int d) { return [d](int m) { return m % d == 0; }; }; if (ranges::any_of(v, DivisibleBy(7))) std::cout << "At least one number is divisible by 7\n"; }
Ausgabe
Among the numbers: 2 4 6 8 10 12 14 16 18 20 All numbers are even None of them are odd At least one number is divisible by 7
[edit] Siehe auch
| (C++11)(C++11)(C++11) |
Prüft, ob eine Bedingung für alle, einige oder keine Elemente in einem Bereich wahr ist (Funktionstempelat) |