Namensräume
Varianten
Aktionen

std::ranges::remove_copy, std::ranges::remove_copy_if, std::ranges::remove_copy_result, std::ranges::remove_copy_if_result

Von cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithmenbibliothek
Beschränkte Algorithmen und Algorithmen für Bereiche (C++20)
Beschränkte Algorithmen, z.B. ranges::copy, ranges::sort, ...
Ausführungsrichtlinien (C++17)
Nicht-modifizierende Sequenzoperationen
Stapeloperationen
(C++17)
Suchoperationen
(C++11)                (C++11)(C++11)

Modifizierende Sequenzoperationen
Kopieroperationen
(C++11)
(C++11)
Tauschoperationen
Transformationsoperationen
Generierungsoperationen
Entfernungsoperationen
Ordnungsändernde Operationen
(bis C++17)(C++11)
(C++20)(C++20)
Stichprobenoperationen
(C++17)

Sortier- und verwandte Operationen
Partitionierungsoperationen
Sortieroperationen
Binäre Suchoperationen
(auf partitionierten Bereichen)
Mengenoperationen (auf sortierten Bereichen)
Zusammenführungsoperationen (auf sortierten Bereichen)
Heapoperationen
Minimum/Maximum-Operationen
(C++11)
(C++17)
Lexikographische Vergleichsoperationen
Permutationsoperationen
C-Bibliothek
Numerische Operationen
Operationen auf uninitialisiertem Speicher
 
Eingeschränkte Algorithmen
Alle Namen in diesem Menü gehören zum Namespace std::ranges
Nicht-modifizierende Sequenzoperationen
Modifizierende Sequenzoperationen
Partitionierungsoperationen
Sortieroperationen
Binäre Suchoperationen (auf sortierten Bereichen)
       
       
Mengenoperationen (auf sortierten Bereichen)
Heapoperationen
Minimum/Maximum-Operationen
       
       
Permutationsoperationen
Faltoperationen
Operationen auf uninitialisiertem Speicher
Rückgabetypen
 
Definiert in Header <algorithm>
Aufruf-Signatur
(1)
template< std::input_iterator I, std::sentinel_for<I> S,

          std::weakly_incrementable O, class T, class Proj = std::identity >
requires std::indirectly_copyable<I, O> &&
         std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr remove_copy_result<I, O>

    remove_copy( I first, S last, O result, const T& value, Proj proj = {} );
(seit C++20)
(bis C++26)
template< std::input_iterator I, std::sentinel_for<I> S,

          std::weakly_incrementable O, class Proj = std::identity,
          class T = std::projected_value_t<I, Proj> >
requires std::indirectly_copyable<I, O> &&
         std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr remove_copy_result<I, O>

    remove_copy( I first, S last, O result, const T& value, Proj proj = {} );
(seit C++26)
(2)
template< ranges::input_range R,

          std::weakly_incrementable O, class T, class Proj = std::identity >
requires std::indirectly_copyable<ranges::iterator_t<R>, O> &&
         std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexpr remove_copy_result<ranges::borrowed_iterator_t<R>, O>

    remove_copy( R&& r, O result, const T& value, Proj proj = {} );
(seit C++20)
(bis C++26)
template< ranges::input_range R,

          std::weakly_incrementable O, class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj> >
requires std::indirectly_copyable<ranges::iterator_t<R>, O> &&
         std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexpr remove_copy_result<ranges::borrowed_iterator_t<R>, O>

    remove_copy( R&& r, O result, const T& value, Proj proj = {} );
(seit C++26)
template< std::input_iterator I, std::sentinel_for<I> S,

          std::weakly_incrementable O, class Proj = std::identity,
          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
requires std::indirectly_copyable<I, O>
constexpr remove_copy_if_result<I, O>

    remove_copy_if( I first, S last, O result, Pred pred, Proj proj = {} );
(3) (seit C++20)
template< ranges::input_range R,

          std::weakly_incrementable O, class Proj = std::identity,
          std::indirect_unary_predicate<
              std::projected<ranges::iterator_t<R>, Proj>> Pred >
requires std::indirectly_copyable<ranges::iterator_t<R>, O>
constexpr remove_copy_if_result<ranges::borrowed_iterator_t<R>, O>

    remove_copy_if( R&& r, O result, Pred pred, Proj proj = {} );
(4) (seit C++20)
Hilfstypen
template< class I, class O >
using remove_copy_result = ranges::in_out_result<I, O>;
(5) (seit C++20)
template< class I, class O >
using remove_copy_if_result = ranges::in_out_result<I, O>;
(6) (seit C++20)

Kopiert Elemente aus dem Quellbereich [firstlast) in den Zielbereich beginnend bei result, wobei Elemente ausgelassen werden, die (nachdem sie von proj projiziert wurden) spezifischen Kriterien erfüllen. Das Verhalten ist undefiniert, wenn sich die Quell- und Zielbereiche überschneiden.

1) Ignoriert alle Elemente, die gleich value sind.
3) Ignoriert alle Elemente, für die der Prädikat pred zurückgibt true.
2,4) Entspricht (1,3), verwendet jedoch r als Quellbereich, als ob ranges::begin(r) als first und ranges::end(r) als last verwendet werden.

Die auf dieser Seite beschriebenen funktionsähnlichen Entitäten sind Algorithmus-Funktionsobjekte (informell als niebloids bekannt), d.h.

Inhalt

[edit] Parameter

first, last - das Iterator-Sentinel-Paar, das den Quell-Bereich der zu verarbeitenden Elemente definiert
r - der Quellbereich der Elemente
Ergebnis - der Anfang des Zielbereichs
value - der Wert der Elemente, die nicht kopiert werden sollen
comp - das binäre Prädikat zum Vergleichen der projizierten Elemente
proj - die Projektion, die auf die Elemente angewendet werden soll

[edit] Rückgabewert

{last, result + N}, wobei N die Anzahl der kopierten Elemente ist.

[edit] Komplexität

Genau ranges::distance(first, last) Anwendungen des entsprechenden Prädikats comp und jeder Projektion proj.

[edit] Hinweise

Der Algorithmus ist stabil, d. h. er behält die relative Reihenfolge der kopierten Elemente bei.

Feature-Test-Makro Wert Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) Listeninitialisierung für Algorithmen (1,2)

[edit] Mögliche Implementierung

remove_copy (1,2)
struct remove_copy_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             std::weakly_incrementable O, class Proj = std::identity,
             class T = std::projected_value_t<I, Proj>>
    requires std::indirectly_copyable<I, O> &&
             std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<I, Proj>, const T*>
    constexpr ranges::remove_copy_result<I, O>
        operator()(I first, S last, O result, const T& value, Proj proj = {}) const
    {
        for (; !(first == last); ++first)
            if (value != std::invoke(proj, *first))
            {
                *result = *first;
                ++result;
            }
        return {std::move(first), std::move(result)};
    }
 
    template<ranges::input_range R, 
             std::weakly_incrementable O, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
    requires std::indirectly_copyable<ranges::iterator_t<R>, O> &&
             std::indirect_binary_predicate<ranges::equal_to,
             std::projected<ranges::iterator_t<R>, Proj>, const T*>
    constexpr ranges::remove_copy_result<ranges::borrowed_iterator_t<R>, O>
        operator()(R&& r, O result, const T& value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(result), value,
                       std::move(proj));
    }
};
 
inline constexpr remove_copy_fn remove_copy {};
remove_copy_if (3,4)
struct remove_copy_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S, std::weakly_incrementable O,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    requires std::indirectly_copyable<I, O>
    constexpr ranges::remove_copy_if_result<I, O>
        operator()(I first, S last, O result, Pred pred, Proj proj = {}) const
    {
        for (; first != last; ++first)
            if (false == std::invoke(pred, std::invoke(proj, *first)))
            {
                *result = *first;
                ++result;
            }
        return {std::move(first), std::move(result)};
    }
 
    template<ranges::input_range R, std::weakly_incrementable O,
             class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    requires std::indirectly_copyable<ranges::iterator_t<R>, O>
    constexpr ranges::remove_copy_if_result<ranges::borrowed_iterator_t<R>, O>
        operator()(R&& r, O result, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::move(result),
                       std::move(pred), std::move(proj));
    }
};
 
inline constexpr remove_copy_if_fn remove_copy_if {};

[edit] Beispiel

#include <algorithm>
#include <array>
#include <complex>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <string_view>
#include <vector>
 
void println(const auto rem, const auto& v)
{
    std::cout << rem << ' ';
    for (const auto& e : v)
        std::cout << e << ' ';
    std::cout << '\n';
}
 
int main()
{
    // Filter out the hash symbol from the given string.
    const std::string_view str{"#Small #Buffer #Optimization"};
    std::cout << "before: " << std::quoted(str) << '\n';
 
    std::cout << "after:  \"";
    std::ranges::remove_copy(str.begin(), str.end(),
                             std::ostream_iterator<char>(std::cout), '#');
    std::cout << "\"\n";
 
    // Copy only the complex numbers with positive imaginary part.
    using Ci = std::complex<int>;
    constexpr std::array<Ci, 5> source
    {
        Ci{1, 0}, Ci{0, 1}, Ci{2, -1}, Ci{3, 2}, Ci{4, -3}
    };
    std::vector<std::complex<int>> target;
 
    std::ranges::remove_copy_if
    (
        source,
        std::back_inserter(target),
        [](int imag) { return imag <= 0; },
        [](Ci z) { return z.imag(); }
    );
 
    println("source:", source);
    println("target:", target);
 
    std::vector<std::complex<float>> nums{{2, 2}, {1, 3}, {4, 8}, {1, 3}};
    std::vector<std::complex<double>> outs;
    #ifdef __cpp_lib_algorithm_default_value_type
        std::remove_copy(nums.cbegin(), nums.cend(), std::back_inserter(outs),
                         {1, 3}); // T gets deduced to std::complex<float>
    #else
        std::remove_copy(nums.cbegin(), nums.cend(), std::back_inserter(outs),
                         std::complex<float>{1, 3});
    #endif
    println("nums:  ", nums);
    println("outs:  ", outs);
}

Ausgabe

before: "#Small #Buffer #Optimization"
after:  "Small Buffer Optimization"
source: (1,0) (0,1) (2,-1) (3,2) (4,-3)
target: (0,1) (3,2)
nums:   (2,2) (1,3) (4,8) (1,3)
outs:   (2,2) (4,8)

[edit] Siehe auch

entfernt Elemente, die bestimmte Kriterien erfüllen
(Algorithmus-Funktionsobjekt)[edit]
Kopiert einen Elementbereich an einen neuen Speicherort
(Algorithmus-Funktionsobjekt)[edit]
Kopiert eine Anzahl von Elementen an einen neuen Speicherort
(Algorithmus-Funktionsobjekt)[edit]
Kopiert einen Elementbereich in umgekehrter Reihenfolge
(Algorithmus-Funktionsobjekt)[edit]
Kopiert einen Bereich und ersetzt Elemente, die bestimmte Kriterien erfüllen, durch einen anderen Wert
(Algorithmus-Funktionsobjekt)[edit]
Erstellt eine Kopie eines Bereichs, der umgekehrt ist
(Algorithmus-Funktionsobjekt)[edit]
Kopiert und rotiert einen Bereich von Elementen
(Algorithmus-Funktionsobjekt)[edit]
Erstellt eine Kopie eines Bereichs von Elementen, die keine aufeinanderfolgenden Duplikate enthält
(Algorithmus-Funktionsobjekt)[edit]
Kopiert einen Bereich von Elementen und lässt diejenigen aus, die bestimmte Kriterien erfüllen
(Funktionstemplate) [edit]