Standardbibliotheks-Header <numeric>
Von cppreference.com
Dieser Header ist Teil der numerischen Bibliothek.
Funktionen | |
| (C++11) |
füllt einen Bereich mit sukzessiven Inkrementen des Startwerts (Funktionstemplate) |
| (C++23) |
füllt einen Bereich mit sukzessiven Inkrementen des Startwerts (Funktionsobjekt für Algorithmen) |
| summiert oder faltet eine Reihe von Elementen (Funktionstemplate) | |
| (C++17) |
ähnlich wie std::accumulate, aber nicht-sequenziell (Funktionstemplate) |
| (C++17) |
wendet eine aufrufbare Funktion an und reduziert dann nicht-sequenziell (Funktionstemplate) |
| berechnet das innere Produkt von zwei Elementreihen (Funktionstemplate) | |
| berechnet die Differenzen zwischen benachbarten Elementen in einer Reihe (Funktionstemplate) | |
| berechnet die partielle Summe einer Elementreihe (Funktionstemplate) | |
| (C++17) |
ähnlich wie std::partial_sum, schließt das i-te Eingabeelement in die i-te Summe ein (Funktionstemplate) |
| (C++17) |
ähnlich wie std::partial_sum, schließt das i-te Eingabeelement von der i-ten Summe aus (Funktionstemplate) |
| (C++17) |
wendet eine aufrufbare Funktion an und berechnet dann einen inklusiven Scan (Funktionstemplate) |
| (C++17) |
wendet eine aufrufbare Funktion an und berechnet dann einen exklusiven Scan (Funktionstemplate) |
| (C++17) |
berechnet den größten gemeinsamen Teiler zweier ganzer Zahlen (Funktionstemplate) |
| (C++17) |
berechnet das kleinste gemeinsame Vielfache zweier ganzer Zahlen (Funktionstemplate) |
| (C++20) |
Mittelpunkt zwischen zwei Zahlen oder Zeigern (Funktionstemplate) |
| (C++26) |
Sättigende Additionsoperation auf zwei ganzen Zahlen (Funktionstemplate) |
| (C++26) |
Sättigende Subtraktionsoperation auf zwei ganzen Zahlen (Funktionstemplate) |
| (C++26) |
Sättigende Multiplikationsoperation auf zwei ganzen Zahlen (Funktionstemplate) |
| (C++26) |
Sättigende Divisionsoperation auf zwei ganzen Zahlen (Funktionstemplate) |
| (C++26) |
gibt einen Ganzzahlwert zurück, der auf den Bereich eines anderen Ganzzahltyps beschränkt ist (Funktionstemplate) |
[bearbeiten] Synopsis
namespace std { // accumulate template<class InputIt, class T> constexpr T accumulate(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T accumulate(InputIt first, InputIt last, T init, BinaryOperation binary_op); // reduce template<class InputIt> constexpr typename iterator_traits<InputIt>::value_type reduce(InputIt first, InputIt last); template<class InputIt, class T> constexpr T reduce(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt> typename iterator_traits<ForwardIt>::value_type reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt, class T> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op); // inner product template<class InputIt1, class InputIt2, class T> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); // transform reduce template<class InputIt1, class InputIt2, class T> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class InputIt, class T, class BinaryOperation, class UnaryOperation> constexpr T transform_reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation1, class BinaryOperation2> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation, class UnaryOperation> T transform_reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); // partial sum template<class InputIt, class OutputIt> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); // exclusive scan template<class InputIt, class OutputIt, class T> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init); template<class InputIt, class OutputIt, class T, class BinaryOperation> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op); // inclusive scan template<class InputIt, class OutputIt> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class InputIt, class OutputIt, class BinaryOperation, class T> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class T> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, T init); // transform exclusive scan template<class InputIt, class OutputIt, class T, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op, UnaryOperation unary_op); // transform inclusive scan template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op); template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation, class T> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation, class T> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op, T init); // adjacent difference template<class InputIt, class OutputIt> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); // iota template<class ForwardIt, class T> constexpr void iota(ForwardIt first, ForwardIt last, T value); namespace ranges { template<class O, class T> using iota_result = out_value_result<O, T>; template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T> requires indirectly_writable<O, const T&> constexpr iota_result<O, T> iota(O first, S last, T value); template<weakly_incrementable T, output_range<const T&> R> constexpr iota_result<borrowed_iterator_t<R>, T> iota(R&& r, T value); } // greatest common divisor template<class M, class N> constexpr common_type_t<M, N> gcd(M m, N n); // least common multiple template<class M, class N> constexpr common_type_t<M, N> lcm(M m, N n); // midpoint template<class T> constexpr T midpoint(T a, T b) noexcept; template<class T> constexpr T* midpoint(T* a, T* b); // saturation arithmetic template<class T> constexpr T add_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T sub_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T mul_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T div_sat(T x, T y) noexcept; // freestanding template<class T, class U> constexpr T saturate_cast(U x) noexcept; // freestanding }