std::hardware_destructive_interference_size, std::hardware_constructive_interference_size
Von cppreference.com
| Definiert im Header <new> |
||
| inline constexpr std::size_t hardware_destructive_interference_size = /*implementierungsdefiniert*/; |
(1) | (seit C++17) |
| inline constexpr std::size_t hardware_constructive_interference_size = /*implementierungsdefiniert*/; |
(2) | (seit C++17) |
1) Minimaler Abstand zwischen zwei Objekten, um False Sharing zu vermeiden. Garantiert mindestens alignof(std::max_align_t)
struct keep_apart { alignas(std::hardware_destructive_interference_size) std::atomic<int> cat; alignas(std::hardware_destructive_interference_size) std::atomic<int> dog; };
2) Maximale Größe eines zusammenhängenden Speicherbereichs, um True Sharing zu fördern. Garantiert mindestens alignof(std::max_align_t)
struct together { std::atomic<int> dog; int puppy; }; struct kennel { // Other data members... alignas(sizeof(together)) together pack; // Other data members... }; static_assert(sizeof(together) <= std::hardware_constructive_interference_size);
[bearbeiten] Hinweise
Diese Konstanten bieten eine portierbare Möglichkeit, auf die Größe der L1-Daten-Cache-Zeile zuzugreifen.
| Feature-Test-Makro | Wert | Std | Feature |
|---|---|---|---|
__cpp_lib_hardware_interference_size |
201703L |
(C++17) | constexpr std::hardware_constructive_interference_size und constexpr std::hardware_destructive_interference_size |
[bearbeiten] Beispiel
Das Programm verwendet zwei Threads, die atomar in die Datenmember der gegebenen globalen Objekte schreiben. Das erste Objekt passt in eine Cache-Zeile, was zu "Hardware-Interferenz" führt. Das zweite Objekt hält seine Datenmember auf separaten Cache-Zeilen, wodurch eine mögliche "Cache-Synchronisation" nach Thread-Schreibvorgängen vermieden wird.
Führen Sie diesen Code aus
#include <atomic> #include <chrono> #include <cstddef> #include <iomanip> #include <iostream> #include <mutex> #include <new> #include <thread> #ifdef __cpp_lib_hardware_interference_size using std::hardware_constructive_interference_size; using std::hardware_destructive_interference_size; #else // 64 bytes on x86-64 │ L1_CACHE_BYTES │ L1_CACHE_SHIFT │ __cacheline_aligned │ ... constexpr std::size_t hardware_constructive_interference_size = 64; constexpr std::size_t hardware_destructive_interference_size = 64; #endif std::mutex cout_mutex; constexpr int max_write_iterations{10'000'000}; // the benchmark time tuning struct alignas(hardware_constructive_interference_size) OneCacheLiner // occupies one cache line { std::atomic_uint64_t x{}; std::atomic_uint64_t y{}; } oneCacheLiner; struct TwoCacheLiner // occupies two cache lines { alignas(hardware_destructive_interference_size) std::atomic_uint64_t x{}; alignas(hardware_destructive_interference_size) std::atomic_uint64_t y{}; } twoCacheLiner; inline auto now() noexcept { return std::chrono::high_resolution_clock::now(); } template<bool xy> void oneCacheLinerThread() { const auto start{now()}; for (uint64_t count{}; count != max_write_iterations; ++count) if constexpr (xy) oneCacheLiner.x.fetch_add(1, std::memory_order_relaxed); else oneCacheLiner.y.fetch_add(1, std::memory_order_relaxed); const std::chrono::duration<double, std::milli> elapsed{now() - start}; std::lock_guard lk{cout_mutex}; std::cout << "oneCacheLinerThread() spent " << elapsed.count() << " ms\n"; if constexpr (xy) oneCacheLiner.x = elapsed.count(); else oneCacheLiner.y = elapsed.count(); } template<bool xy> void twoCacheLinerThread() { const auto start{now()}; for (uint64_t count{}; count != max_write_iterations; ++count) if constexpr (xy) twoCacheLiner.x.fetch_add(1, std::memory_order_relaxed); else twoCacheLiner.y.fetch_add(1, std::memory_order_relaxed); const std::chrono::duration<double, std::milli> elapsed{now() - start}; std::lock_guard lk{cout_mutex}; std::cout << "twoCacheLinerThread() spent " << elapsed.count() << " ms\n"; if constexpr (xy) twoCacheLiner.x = elapsed.count(); else twoCacheLiner.y = elapsed.count(); } int main() { std::cout << "__cpp_lib_hardware_interference_size " # ifdef __cpp_lib_hardware_interference_size "= " << __cpp_lib_hardware_interference_size << '\n'; # else "is not defined, use " << hardware_destructive_interference_size << " as fallback\n"; # endif std::cout << "hardware_destructive_interference_size == " << hardware_destructive_interference_size << '\n' << "hardware_constructive_interference_size == " << hardware_constructive_interference_size << "\n\n" << std::fixed << std::setprecision(2) << "sizeof( OneCacheLiner ) == " << sizeof(OneCacheLiner) << '\n' << "sizeof( TwoCacheLiner ) == " << sizeof(TwoCacheLiner) << "\n\n"; constexpr int max_runs{4}; int oneCacheLiner_average{0}; for (auto i{0}; i != max_runs; ++i) { std::thread th1{oneCacheLinerThread<0>}; std::thread th2{oneCacheLinerThread<1>}; th1.join(); th2.join(); oneCacheLiner_average += oneCacheLiner.x + oneCacheLiner.y; } std::cout << "Average T1 time: " << (oneCacheLiner_average / max_runs / 2) << " ms\n\n"; int twoCacheLiner_average{0}; for (auto i{0}; i != max_runs; ++i) { std::thread th1{twoCacheLinerThread<0>}; std::thread th2{twoCacheLinerThread<1>}; th1.join(); th2.join(); twoCacheLiner_average += twoCacheLiner.x + twoCacheLiner.y; } std::cout << "Average T2 time: " << (twoCacheLiner_average / max_runs / 2) << " ms\n\n" << "Ratio T1/T2:~ " << 1.0 * oneCacheLiner_average / twoCacheLiner_average << '\n'; }
Mögliche Ausgabe
__cpp_lib_hardware_interference_size = 201703 hardware_destructive_interference_size == 64 hardware_constructive_interference_size == 64 sizeof( OneCacheLiner ) == 64 sizeof( TwoCacheLiner ) == 128 oneCacheLinerThread() spent 517.83 ms oneCacheLinerThread() spent 533.43 ms oneCacheLinerThread() spent 527.36 ms oneCacheLinerThread() spent 555.69 ms oneCacheLinerThread() spent 574.74 ms oneCacheLinerThread() spent 591.66 ms oneCacheLinerThread() spent 555.63 ms oneCacheLinerThread() spent 555.76 ms Average T1 time: 550 ms twoCacheLinerThread() spent 89.79 ms twoCacheLinerThread() spent 89.94 ms twoCacheLinerThread() spent 89.46 ms twoCacheLinerThread() spent 90.28 ms twoCacheLinerThread() spent 89.73 ms twoCacheLinerThread() spent 91.11 ms twoCacheLinerThread() spent 89.17 ms twoCacheLinerThread() spent 90.09 ms Average T2 time: 89 ms Ratio T1/T2:~ 6.16
[bearbeiten] Siehe auch
| [static] |
gibt die Anzahl der von der Implementierung unterstützten parallelen Threads zurück (public static member function of std::thread) |
| [static] |
gibt die Anzahl der von der Implementierung unterstützten parallelen Threads zurück (public static member function of std::jthread) |